7. Bölüm: Ardışık Bağımlılık

Bu bölümde;

- Regresyon Modelinden Artık Serileri Oluşturma
- Ardışık Bağımlılık Tespiti İçin Artıkların Grafiğini Çizme
- Regresyonu Kullanarak Birinci Sıra Ardışık Bağımlılık Katsayısını Tahmin Etme
- Eviews Çıktısında Durbin-Watson d İstatistiğinin Görüntülenmesi
- AR(1) Metoduyla Genelleştirilmiş EKK
- Cochrane-Orcutt Metoduyla Genelleştirilmiş EKK
- Alıştırma

Ardışık bağımlılık analizi hata terimlerinin incelenmesini içermektedir. Tavuk talebi denklemi ve verisi bu bölümde anlatılan süreçlerde kullanılacaktır.

7.1. Regresyon Modelinden Artık Serileri Oluşturma

Tavuk talebi modeli tahmin etmek, sonuçları **EQ01** adıyla bir denklem olarak kaydetmek, *E* adında bir artık serisi oluşturmak ve değişiklikleri kaydetmek için aşağıdaki adımları takip edin.

<u>1. ADIM</u>: *Chick6.wf1* isimli dosyayı açın.

<u>2. ADIM</u>: Denklem menü çubuğundan "**Objects/New Object/Equation**" seçeneğini seçin, "**Equation Specification**" kısmına sırasıyla *Y C PC PB YD* yazın ve **OK**'ye tıklayın.

3. ADIM: Denklem menü çubuğundan "Name" seçeneğini seçin, "Name to identify object" kısmına EQ01 yazın ve OK'ye tıklayın.

<u>ADIM</u>: Artıklara ait yeni bir seri oluşturmak için denklem menü çubuğundan "Proc/Make Residual Series" seçeneğini seçin. "Name for residual series" kısmına *E* yazın OK'ye tıklayın. Artık serilerine ait çalışma sayfası yeni bir pencerede açılacaktır.

Make Residuals	×
Residual type Ordinary C Standardized C Generalized	OK
Name for resid series	Cancel

<u>5. ADIM</u>: Değişikliklerinizi kaydetmek için çalışma sayfası menü çubuğundan "**Save**" seçeneğini seçin.

7.2. Ardışık Bağımlılık Tespiti İçin Artıkların Grafiğini Çizme

Bu bölüme başlamadan önce *"Regresyon Modelinden artık serileri oluşturma"* başlıklı kısmı tamamlayın. Artıkların grafiğini çizmek için aşağıdaki adımları izleyin.

<u>2. ADIM</u>: Denklem menü çubuğundan "**View/Actual, Fitted, Residual/Residual Graph**" seçeneğini seçin. Bu işlem aşağıda yer alan grafiği oluşturacaktır. Grafik görüldüğü üzere teorik grafiklerle benzerlik göstermektedir. Dolayısıyla grafik incelemesi sonucu pozitif ardışık bağımlılık vardır denebilir. 3 ve 4. Adımlar ise aynı artık serisi *E*'ye ait zaman serisi grafiğinin çizimini anlatmaktadır.

- **<u>3. ADIM:</u>** *E* adlı artık serisini çalışma dosyası penceresinde yer alan simgesine çift tıklayarak açın.
- **<u>4. ADIM</u>**: Aşağıda yer alan grafiği görüntülemek için "View/ Graph /Line" seçeneğini seçin.

7.3. Regresyonu Kullanarak Birinci Sıra Ardışık Bağımlılık Katsayısını Tahmin Etme¹

Bu bölüme başlamadan önce *"Regresyon Modelinden artık serileri oluşturma"* başlıklı kısmı tamamlayın. Birinci sıra ardışık bağımlılığı tahmin etmek ve olası birinci sıra ardışık bağımlılıkları tespit etmek için aşağıdaki adımları uygulayın.

<u>2. ADIM:</u> Denklem	Equation: UNTITLED	Workfile: CHI	CK6::Untitled\			IN
menü çubuğundan	View Proc Object Print	Name Freeze E	stimate Forecas	st Stats Resid	ls	_
"Objects/New	Dependent Variable: E Method: Least Square	E IS				
Object/Equation"	Date: 02/14/10 Time	: 19:29				
seçeneğini seçin,	Sample (adjusted): 1952 1994 Included observations: 43 after adjustments					
"Equation	Variable	Coefficient	Std. Error	t-Statistic	Prob.	
Specification" kısmına	C	-0.019618	0 258797	-0 075803	0.9399	
sırasıyla <i>E C E(-1)</i> yazın	E(-1)	0.500358	0.135451	3.694016	0.0006	
ve OK' ye tıklayın. Rho	R-squared	0.249713	Mean depen	dent var	-0.041758	
(ρ) , <i>Ε(-1)</i> 'e ait	Adjusted R-squared	0.231413	S.D. depend	lent var	1.935224	
	S.E. of regression	1.696593	Akaike info	criterion	3.940516	
katsayıyı ve bu	Sum squared resid	118.0155	Schwarz crit	terion	4.022432	
un mun an an la inimat	Log likelihood	-82.72110	F-statistic		13.64575	
regresyonda birinci	Durbin-Watson stat	2.105547	Prob(F-stati	stic)	0.000646	
sıra ardışık bağımlılığı						
simgelemektedir.						
Buradaki durumda						

<u>1. ADIM</u>: *Chick6.wf1* isimli dosyayı açın.

 \mathbf{p} 'nun işareti pozitiftir ve %1 bir düzeyinde istatistiki olarak anlamlıdır (t-istatistiği = 3.81 ve Prob değeri = 0.0005). Bunun bir ardışık bağımlılık testi olmadığına dikkat edilmelidir. \mathbf{p} 'nun değeri sonraki bölümde anlatılacak olan Durbin-Watson d istatistiği ile ilişkilidir².

¹ Olası ikinci sıra ardışık bağımlılığı test etmek için artıkları bir gecikmeli ve iki gecikmeli değerleri üzerine regress edin ("**Equation Specification**" a *E C E(-1) E(-2)* şeklinde girerek). Çeyreklik bir modelde sezonluk ardışık bağımlılık tespiti için artıkları dört gecikmeli değerleri üzerine regress edin ("**Equation Specification**" a *E C E(-4)* şeklinde girerek). Benzer biçimde aylık modelde ardışık bağımlılık tespiti için artıkları on iki gecikmeli değerleri üzerine regress edin ("**Equation Specification**" a *E C E(-4)* şeklinde girerek). Benzer biçimde aylık modelde ardışık bağımlılık tespiti için artıkları on iki gecikmeli değerleri üzerine regress edin ("**Equation Specification**" a *E C E(-12)* şeklinde girerek).

² Durbin-Watson d istatistiği yaklaşık olarak **2(1-p)**'ya eşittir.

7.4. EViews Çıktısında Durbin-Watson d İstatistiğinin Görüntülenmesi

Bu bölüme başlamadan önce *"Regresyon Modelinden artık serileri oluşturma"* başlıklı kısmı tamamlayın. **EQ01'**e ait Durbin-Watson d testini görüntülemek için aşağıdaki adımları uygulayın.

<u>1. ADIM:</u> EQ01'i çalışma dosyası penceresindeki simgesine çift tıklayarak açın.

<u>2. ADIM</u>: Denklem menü çubuğundan "**View/Estimation Output**" seçeneğini seçin ve regresyon çıktısını görüntüleyin. Durbin-Watson istatistiği aşağıda yer alan çıktıda sarı işaret ile gösterilmiştir³.

Equation: EQ01 Wo	rkfile: CHICK6:	:Untitled\			l×
View Proc Object Print	Name Freeze E	stimate Foreca	st Stats Resid	s	
Dependent Variable: Method: Least Squar Date: 02/14/10 Time Sample: 1951 1994 Included observations	Y es ∷ 19:25 : 44				
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C PC PB YD	31.49604 -0.729695 0.114148 0.233830	1.312586 0.080020 0.045686 0.016447	23.99541 -9.118941 2.498536 14.21738	0.0000 0.0000 0.0167 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.986828 0.985840 2.003702 160.5929 -90.91632 0.978759	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		43.37500 16.83854 4.314378 4.476577 998.9207 0.000000	

<u>3. ADIM</u>: "Included observations" kısmında yazan örneklem büyüklüğünü (yani 40) ve açıklayıcı değişken sayısını (yani 3) kullanarak kritik d değeri için alt ve üst limitleri hesaplayın.

³ Durbin-Watson istatistiği birinci sıra ardışık bağımlılık testidir. DW istatistiği bir regresyon modelinden elde edilen komşu artıklar arasındaki doğrusal ilişkiyi ölçer. DW testi $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$ spesifikasyonunda $\rho = 0$ hipotezini test eder. Eğer ardışık bağımlılık yoksa DW istatistiği 2 gibi bir değere yakın olur. Eğer pozitif ardışık bağımlılık varsa değer 2'den küçük en kötü senaryoda ise 0 olacaktır. Eğer negatif ardışık bağımlılık varsa değer 2 ile 4 arasında bir değer alacak en kötü senaryoda ise 4 olacaktır. Pozitif ardışık bağımlılık en sık rastlanan ardışık bağımlılık çeşididir. Bir pratik kural olarak, 50 veya daha fazla gözlem ve birkaç bağımsız değişken için 1.5'den daha küçük bir DW istatistiği birinci sıra pozitif ardışık bağımlılığın güçlü bir göstergesidir.

7.5. AR(1) Metoduyla Genelleştirilmiş EKK

AR(1) metoduyla GEKK denklem tahminini kullanarak tavuk talebi modelini tahmin etmek için aşağıdaki adımları izleyin.

1. ADIM: Chick6.wf1 adlı çalışma dosyasını açın.

2. ADIM: Denklem menü çubuğundan "**Objects/New Object/Equation**" seçeneğini seçin, "**Equation Specification**" kısmına sırasıyla *Y C PC PB YD AR(1)* yazın ve **OK**'ye tıklayın. Bu aşağıda yer alan çıktıyı oluşturacaktır. EViews otomatik olarak tahminde kullanılan gecikmeli değişken için örneklemi düzenleyecek, tahmini yapacak ve düzenlenmiş örneklemi tahmin çıktısında gösterecektir.

Equation: UNTITLED Workfile: CHICK6::Untitled				
View Proc Object Print	Name Freeze E	stimate Foreca	st Stats Resid	5
Dependent Variable: ` Method: Least Square Date: 02/14/10 Time Sample (adjusted): 19 Included observations Convergence achieved	Y es : 19:32)52 1994 : 43 after adju d after 12 itera	stments tions		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	26.72974	3.994906	6.690957	0.0000
PC	-0.109877	0.084947	-1.293476	0.2037
PB	0.090291	0.043806	2.061178	0.0462
YD	0.242015	0.026521	9.125487	0.0000
AR(1)	0.902888	0.063700	14.17411	0.0000
R-squared	0.995060	Mean dependent var		43.87674
Adjusted R-squared	0.994540	S.D. dependent var		16.70169
S.E. of regression	1.234162	Akaike info criterion		3.367605
Sum squared resid	57.87989	Schwarz criterion		3.572396
Log likelihood	-67.40351	F-statistic		1913.442
Durbin-Watson stat	2.159854	Prob(F-statistic)		0.000000
Inverted AR Roots	.90			

Tahmin edilmiş katsayılar, katsayı standart hataları ve t-istatistikleri her zamanki şekilde yorumlanabilir. AR(1) değişkenine ait katsayı koşulsuz artıkların ardışık bağımlılık katsayısıdır⁴.

⁴ Koşulsuz artıklar güncel veri kullanılarak fakat gecikmeli artıklarda yer alan bilgi dikkate alınmadan hatalar hakkında yapılan tahmin değerleridir. EViews ile tahmin edilen AR modelleri için artık tabanlı regresyon

7.6. Cochrane-Orcutt Metoduyla Genelleştirilmiş EKK

Cochrane-Orcutt yöntemi tahmin edilen birinci sıra ardışık bağımlılık katsayısı yakınsayana kadar tekrar tekrar tahmin yapmayı gerektiren çok-adımlı bir prosedürdür. Cochrane-Orcutt metodunu kullanarak CIA'nın Sovyet savunma harcamaları tahminini gerçekleştirmek için aşağıdaki adımları izleyin.

1. ADIM: Defend9.wf1 isimli dosyayı açın.

<u>2. ADIM</u>: *"Regresyon Modelinden artık serileri oluşturma"* başlıklı kısımda yer alan adımları izleyerek LOG(SDH) C LOG(USD) LOG(SY) LOG(SP) şeklindeki EKK denklemini tahmin edin, denklemi **EQ01** olarak adlandırın ve **EQ01** için *E* adında artık serisi oluşturun.

<u>3. ADIM:</u> ρ' yu tahmin edin ve **EQ02** olarak adlandırın.

4. ADIM: $lnSDH_t = 3.55 + 0.108lnUSD_t + 0.137lnSY_t - 0.0008lnSP_t$ denkleminin genelleştirilmiş fark şeklini tahmin etmek için çalışma dosyası menü çubuğunda "**Objects/New Object/Equation**" seçeneğini seçin, "**Name to identify object**" kısmına **EQ03** ve "**Equation Specification**" kısmına LOG(SDH)-EQ02.@COEFS(2)*LOG(SDH(-1)) C LOG(USD)-EQ02.@COEFS(2)*LOG(USD(-1)) LOG(SY)-EQ02.@COEFS(2)*LOG(SY(-1)) LOG(SP)-EQ02.@COEFS(2)*LOG(SY(-1)) LOG(SP)-EQ02.@COEFS(2)*LOG(SY(-1)) LOG(SP)-EQ02.@COEFS(2)*LOG(SY(-1)) LOG(SP)-EQ02.@COEFS(2)*LOG(SY(-1)) LOG(SP)-EQ02.@COEFS(2)*LOG(SY(-1)) LOG(SP)-EQ02.@COEFS(2)*LOG(SP(-1)) yazın. "**Equation Specification**" aşağıdaki gibi olacaktır⁵. **OK**'ye tıklayarak EViews'un EKK tahmin sonucunu göstermesini sağlayın. Değişken isim hücresine sığmadıklarından regresyon çıktı tablosunda değişken isimleri kesilmiş şekildedir⁶.

⁵ Daha önceden kaydedilmiş regresyon denklemleri denklem adı, ardından nokta ve istenen spesifik çıktı için referans yazılarak geri çağrılabilir. Bu durumda **EQ02**'den elde edilen ρ değerini geri çağırmak için *EQ02.@coefs(2)* komutu yazılır. "**Equation Specification**" kısmında ρ için *EQ02.@coefs(2)* ifadesi kullanılabilir.

istatistikleri –örneğin, regresyon standart hatası ve DW istatistiği- EViews tarafından bir dönem sonraki öngörü hatalarına dayandırılarak rapor edilir.

AR modelleri tahmin etmede sıklıkla kullanılan yöntemler Cochrane-Orcutt, Prais-Winsten, Hatanaka ve Hildreth-Lu prosedürleridir. Bu çok-adımlı yaklaşımlar tahminlerin standart doğrusal regresyon kullanılarak yapılabilmesi için tasarlanmıştır. EViews AR modellerini doğrusal olmayan regresyon teknikleri ile tahmin etmektedir. Bu yaklaşım kolaylıkla anlaşılma, genel kabul görme ve doğrusal olmayan spesifikasyonlar ile endojen bağımsız değişkenler içeren modeller için kolaylıkla genişletilebilme gibi avantajlara sahiptir.

⁶ Denklem, denklem penceresi menü çubuğunda "View/Representations" seçeneği seçilerek görüntülenebilir. Denklem LOG(SDH)-EQ02.@COEFS(2)*LOG(SDH(-1)) = -0.3853742398 + 0.051311279*(LOG(USD)-EQ02.@COEFS(2)*LOG(USD(-1))) + 0.8632851647*(LOG(SY)-EQ02.@COEFS(2)*LOG(SY(-1))) + 0.05750410216*(LOG(SP)-EQ02.@COEFS(2)*LOG(SP(-1))) şeklindedir. EQ01'e ait tahmin çıktısını görüntülemek için grup penceresi menü çubuğunda "View/Estimation Output" seçeneğini seçin.

Equation Estimation	×
Specification Options	
Equation specification Dependent variable followed by list of regressors including ARMA and PDL terms, OR an explicit equation like Y=c(1)+c(2)*X.	
LOG(SDH)-EQ02.@COEFS(2)*LOG(SDH(-1)) C LOG(USD)-EQ02.@COEFS(2) *LOG(USD(-1)) LOG(SY)-EQ02.@COEFS(2)*LOG(SY(-1)) LOG(SP)- EQ02.@COEFS(2)*LOG(SP(-1))	
Estimation settings	
Method: LS - Least Squares (NLS and ARMA)	
Sample: 1960 1984	
Tamam İptal	

5. ADIM: Yeni artık serilerini oluşturmak için komut penceresine *series E = LOG(SDH)-*(*EQ03.@COEFS(1) + EQ03.@COEFS(2)*LOG(USD) + EQ03.@COEFS(3)*LOG(SY) + EQ03.@COEFS(4)*LOG(SP))* yazın ve **ENTER**'a basın. Durum çubuğunda "**E successfully computed**" ifadesi görünecektir.

<u>6. ADIM:</u> EQ02, EQ03 ve E serisine ait denklemleri sırasıyla tekrar tahmin edin⁷. Bu tahmin işlemini ρ 'daki (yani EQ02'deki *E*(-1) terimine ait katsayı) değişiklik 0.001 gibi değer oluncaya kadar tekrarlayın. 11 tekrardan sonra ρ değeri yakınsayacaktır (10. Deneme ile 11. Deneme arasında ρ , 0.957566'dan to 0.95758'e değişmiştir).

<u>7. ADIM:</u> Komut penceresine *scalar BETA0=EQ03.@COEFS(1)/(1-EQ02.@COEFS(2))* komutunu yazarak EQ03'ün son versiyonundaki sabit terimi dönüştürün. Çalışma dosyası penceresinde *beta0* simgesini çift tıklayın. Bu durum çubuğunda tahmin edilen sabit terimi görüntüleyecektir.

En son denklem *LOG(SDH)* = 3.55208248072⁸ + 0.107961186*(*LOG(USD*)) + 0.1368904004*(*LOG(SY*)) - 0.000837025419*(*LOG(SP*)) şeklindedir.

⁷ Bir denklemi tekrar tahmin etmek için denklem penceresini açıp denklem menü çubuğunda "**Estimate**" seçeneğini seçip **OK**'ye tıklamak yolu da izlenebilir.

⁸ 3.55208248072 değeri 7. Adım'da hesaplanmıştır.